4.7 Article

Inflammatory mediators accelerate metabolism of benzo[a]pyrene in rat alveolar type II cells: The role of enhanced cytochrome P450 1B1 expression

Journal

TOXICOLOGY
Volume 314, Issue 1, Pages 30-38

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.tox.2013.09.001

Keywords

Inflammation; CYP1B1; Polycyclic aromatic hydrocarbons; Metabolism; DNA adducts

Funding

  1. Czech Science Foundation [P503/11/1227]
  2. project of the Czech Ministry of Education, Youth and Sports [CZ.1.07/2.3.00/30.0030]
  3. Academy of Sciences of the Czech Republic [AV0Z50040702]
  4. Czech Ministry of Agriculture [MZE0002716202]

Ask authors/readers for more resources

Long-term deregulated inflammation represents one of the key factors contributing to lung cancer etiology. Previously, we have observed that tumor necrosis factor-alpha (TNF-alpha), a major pro-inflammatory cytokine, enhances genotoxicity of benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon, in rat lung epithelial RLE-6TN cells, a model of alveolar type II cells. Therefore, we analyzed B[a]P metabolism in RLE-6TN cells under inflammatory conditions, simulated using either recombinant INF-alpha, or a mixture of inflammatory mediators derived from activated alveolar macrophage cell line. Inflammatory conditions significantly accelerated BaP metabolism, as evidenced by decreased levels of both parent B[a]P and its metabolites. INF-alpha altered production of the metabolites associated with dihydrodiol-epoxide and radical cation pathways of B[a]P metabolism, especially B[a]P-dihydrodiols, and B[a]P-diones. We then evaluated the role of cytochrome P450 1B1 (CYP1B1), which is strongly up-regulated in cells treated with B[a]P under inflammatory conditions, in the observed effects. The siRNA-mediated CYP1B1 knock-down increased levels of B[a]P and reduced formation of stable DNA adducts, thus confirming the essential role of CYP1B1 in B[a]P metabolism under inflammatory conditions. TNF-alpha also reduced expression of aldo-keto reductase 104, which may compete with CYP1B1 for B[a]P-7,8-dihydrodiol and divert it from the formation of ultimate B[a]P dihydrodiol epoxide. Together, the present data suggests that the CYP1B1-catalyzed metabolism of polycyclic aromatic hydrocarbons might contribute to their enhanced bioactivation and genotoxic effects under inflammatory conditions. (C) 2013 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available