4.7 Article

Toxicogenomic investigation on rat testicular toxicity elicited by 1,3-dinitrobenzene

Journal

TOXICOLOGY
Volume 290, Issue 2-3, Pages 169-177

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.tox.2011.09.001

Keywords

Testicular toxicity; 1,3-Dinitrobenzene; Microarray; Biomarker; Toxicogenomics

Ask authors/readers for more resources

Rats were treated with a single oral dose of 10, 25 and 50 mg/kg of 1,3-dinitrobenzene (DNB), and the testis was subjected to a GeneChip microarray analysis. A total of 186 and 304 gene probe sets were up- and down-regulated, respectively, by the DNB treatment, where spermatocyte death and Sertoli cell vacuolation in testis and increased debris of spermatogenic cell in epididymis were noted. The expression profile for four sets of genes were investigated, whose expressions are reported to localize in specific cell types in the seminiferous epithelium, namely Sertoli cells, spermatogonia plus early spermtocytes, pachytene spermatocytes and round spermatids. The data demonstrated that pachytene spermatocyte-specific genes elicited explicit down-regulation in parallel with the progression of spermatocyte death, while other gene sets did not show characteristic expression changes. In addition, Gene Ontology analysis indicated that genes associated with cell adhesion-related genes were significantly enriched in the up-regulated genes following DNB treatment. Cell adhesion-related genes, namely Cdh2, Ctnna1, Vcl, Zyx, ltgb1, Testin, Lamc3, Pvrl2 and Gsn, showed an increase in microarray and the up-regulation of Cdh2 and Testin were confirmed by real time RT-PCR. The gene expression changes of pachytene spermatocyte-specific genes and cell adhesion-related genes were thought to reflect a decrease in the number of spermatocytes and dysfunction of Sertoli-germ cells adhesion junction, and therefore these genes would be potential genomic biomarkers for assessing DNB-type testicular toxicity. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available