4.5 Article

Suppression of Autophagic Flux by Bile Acids in Hepatocytes

Journal

TOXICOLOGICAL SCIENCES
Volume 137, Issue 2, Pages 478-490

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kft246

Keywords

bile acid; autophagy; hepatocytes; farnesoid X receptor

Categories

Funding

  1. National Institute on Alcohol Abuse and Alcoholism [R01 AA020518-01]
  2. National Center for Research Resources [5P20RR021940-07]
  3. National Institute of General Medical Sciences [8 P20 GM103549-07]
  4. [DK031343]
  5. [DK090036]

Ask authors/readers for more resources

Retention of bile acids (BAs) in the liver during cholestasis plays an important role in the development of cholestatic liver injury. Several studies have reported that high concentrations of certain BAs induce cell death and inflammatory response in the liver, and BAs may promote liver tumorigenesis. Macroautophagy (hereafter referred to as autophagy) is a lysosomal degradation process that regulates organelle and protein homeostasis and serves as a cell survival mechanism under a variety of stress conditions. However, it is not known if BAs modulate autophagy in hepatocytes. In the present study, we determined autophagic flux in livers of farnesoid X receptor (FXR) knockout (KO) mice that have increased concentrations of hepatic BAs and in primary cultured mouse hepatocytes treated with BAs. The results showed that autophagic flux was impaired in livers of FXR KO mice and in BA-treated primary mouse hepatocytes. Mechanistically, BAs did not affect the activities of cathepsin or the proteasome, but impaired autophagosomal-lysosomal fusion likely due to reduction of Rab7 protein expression and targeting to autophagosomes. In conclusion, BAs suppress autophagic flux in hepatocytes by impairing autophagosomal-lysosomal fusion, which may be implicated in bile acid-induced liver tumor promotion observed in FXR KO mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available