4.0 Article

Nanomaterials in Humans: Identification, Characteristics, and Potential Damage

Journal

TOXICOLOGIC PATHOLOGY
Volume 39, Issue 5, Pages 841-849

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0192623311413787

Keywords

human; pleural effusion; pulmonary fibrosis; silica nanoparticle

Funding

  1. Office Of The Director
  2. Office of Integrative Activities [1003907] Funding Source: National Science Foundation
  3. Intramural CDC HHS [CC999999] Funding Source: Medline

Ask authors/readers for more resources

Nanomaterials are increasingly being used for commercial purposes. However, concerns about the potential risks of exposure to humans have been raised. We previously reported unusual pulmonary disease and death in a group of patients with occupational exposure to spray paint. However, the nanoparticle and chemical composition of the exposure was not fully described. The present study aimed to isolate and identify the nanoparticles observed in the patients' biopsies and report the potential deleterious effects to human lungs using electron microscopy. Using electron microscopy and energy dispersive x-ray analysis, silica nanoparticles were identified and characterized mainly in macrophages, pulmonary microvessels, vascular endothelial cells, microlymphatic vessels, pleural effusions, and a few in alveolar epithelial cells and pulmonary interstitial tissue (with no microscale particles present). Notably, damage to alveolar epithelial cells, macrophages, vascular endothelial cells, and the blood-gas barrier was observed. Given the well-documented toxicity of microscale silica, it is possible that these silica nanoparticles may have contributed in part to the illness reported in these workers. Such a possibility supports the adoption of controls and prevention strategies to minimize inhalation of nanoparticles by workers, and it highlights the urgent need and the importance of the nanosafety study in humans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available