4.1 Article

Osteogenic Differentiation and Ectopic Bone Formation of Canine Bone Marrow-Derived Mesenchymal Stem Cells in Injectable Thermo-Responsive Polymer Hydrogel

Journal

TISSUE ENGINEERING PART C-METHODS
Volume 17, Issue 11, Pages 1139-1149

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tec.2011.0140

Keywords

-

Funding

  1. National Science Council of the Republic of China [NSC-96-2221-E-182-028-MY2, NSC-96-2314-B-182A-076-MY3]
  2. Chang Gung Memorial Hospital [CMRPD290101, CMRPD170292]

Ask authors/readers for more resources

This study describes an injectable, thermo-responsive hyaluronic acid-g-chitosan-g-poly(N-isopropylacrylamide) (HA-CPN) copolymer for bone tissue engineering. The wettability, temperature-dependent change of water content, and volume of HA-CPN hydrogel were measured, together with its biocompatibility in vitro and in vivo. The dried hydrogel morphology shows a three-dimensional, porous structure with interconnected pores. Canine bone marrow-derived mesenchymal stem cells (cBMSCs) were encapsulated in HA-CPN hydrogel and osteoinduction was assessed by comparing samples with different osteogenic differentiation induction times but with the same total cell culture time. Cell proliferation and time-dependent osteogenic differentiation, evident from secretion of extracellular matrix and formation of mineral deposits, were observed. The cells showed better proliferation in HA-CPN hydrogel than on tissue culture polystyrene after osteo-induced for 21 days and higher alkaline phosphatase activity regardless of osteo-induction times. Mineralization extent of cBMSCs in HA-CPN followed by Alizarin red stains showed positive stained nodules after osteo-induced longer than 7 days. The cells/hydrogel construct also showed increased mechanical strength and elasticity after osteogenic differentiation, and the increase could be correlated with osteo-induction time. In vivo studies confirmed the biocompatibility and bioresorption of the HA-CPN hydrogel and ectopic bone formation when the hydrogel was used as a cell carrier for osteo-induced cBMSCs and implanted in nude mice subcutaneously. Taken together, the results indicate the feasibility and efficacy of HA-CPN hydrogel as an injectable bone tissue engineering scaffold with cBMSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available