4.1 Article

Method for Decellularizing Skeletal Muscle Without Detergents or Proteolytic Enzymes

Journal

TISSUE ENGINEERING PART C-METHODS
Volume 17, Issue 4, Pages 383-389

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tec.2010.0438

Keywords

-

Funding

  1. California Institute of Regenerative Medicine [RN2-00945-1]
  2. NIH [R01AR057393]
  3. National Science Foundation
  4. NICHD

Ask authors/readers for more resources

Decellularized skeletal muscle is a promising model that can be used to study cell-matrix interactions and changes that occur in muscle extracellular matrix (ECM) in myopathies and muscle wasting diseases. The goal of this study is to develop a novel method to decellularize skeletal muscle that maintains the native biochemical composition and structure of the ECM. This method consists of sequential incubation of mouse tibialis anterior muscles in latrunculin B, high ionic strength salt solution, and DNase I and avoids use of proteases or detergents that degrade the ECM. Characterization of the decellularized muscles using hematoxylin and eosin staining along with DNA quantification suggested complete removal of DNA, whereas biochemical analyses indicated no loss of collagens and only a slight reduction in glycosaminoglycans. Western blot analysis of decellularized tissues showed removal of the vast majority of the contractile proteins actin and myosin, and morphological analysis using scanning electron microscopy suggested removal of myofibers from decellularized muscle tissues. Passive mechanical testing of decellularized muscle bundles revealed the typical nonlinear behavior, similar to that of intact muscle. Together, these results suggest that the protocol developed successfully decellularizes skeletal muscle without altering its composition and mechanical function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available