4.4 Article

High-Throughput and Combinatorial Technologies for Tissue Engineering Applications

Journal

TISSUE ENGINEERING PART B-REVIEWS
Volume 15, Issue 3, Pages 225-239

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.teb.2009.0049

Keywords

-

Ask authors/readers for more resources

As the field of tissue engineering progresses, new technology is essential to accelerate the identification of potentially translatable approaches for the repair of tissues damaged due to disease or trauma. The development of high-throughput and combinatorial technologies is helping to speed up research that is applicable to all aspects of the tissue engineering paradigm. This diverse technology can be used for both the rapid synthesis of polymers and their characterization with respect to local and bulk properties in a high-throughput fashion. The interactions of cells with many diverse materials in both two-and three-dimensions can be assessed rapidly through the use of microarrays and rapid outcome measures and with microfluidic devices for investigation of soluble factor and material combinations. Finally, small molecule screening of large libraries is being used to identify molecules that exhibit control over cell behavior, including stem cell differentiation. All of these approaches are aimed to move beyond traditional iterative methods to identify unique materials and molecules that would not have been identified otherwise. Although much of this work is only applicable for in vitro studies, future methods may translate into rapid screening of these approaches in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available