4.2 Article

Surface Plasma Treatment of Poly(caprolactone) Micro, Nano, and Multiscale Fibrous Scaffolds for Enhanced Osteoconductivity

Journal

TISSUE ENGINEERING PART A
Volume 20, Issue 11-12, Pages 1689-1702

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2013.0569

Keywords

-

Funding

  1. Department of Biotechnology (DBT), India [BT/PR 13585/NNT/28/474/2010]
  2. Council of Scientific and Industrial Research under the CSIR-SRF [9/963(0034) 2K13-EMR-I]
  3. Nanomission, Department of Science and Technology (DST), Government of India

Ask authors/readers for more resources

In this study, poly(caprolactone) (PCL) was electrospun to nano, micro, and multiscale (micro-nano) fibers, which were then subjected to low pressure argon and nitrogen plasma treatment. The electrospun fibers contain microfibers of diameter 8-10 mu m and nanofibers of diameter 200-300 nm. Characterization of the plasma-treated fibers showed that treatment using less oxidizing gas like nitrogen and inert gas like argon functionalize the surface with polar groups that significantly modify the properties of the scaffold. Highly hydrophobic PCL fibrous scaffolds were rendered hydrophilic, with significantly improved biomineralization after the plasma treatment. While plasma treatment on micro and multiscale fibers enhanced their protein adsorption, cell attachment, spreading, elongation, and proliferation, nanofibers showed remarkably improved cell attachment. The applicability of plasma-treated electrospun fibers for differentiation of mesenchymal stem cell toward osteogenic lineage was also studied. Accelerated differentiation toward osteoblast lineage, with maximum alkaline phosphatase (ALP) activity in 14 days was achieved in plasma-treated fibers. Another remarkable outcome was the enhanced ALP activity of the microfibers after plasma treatment, compared with multiscale and nanofibers. Alizarin red staining further confirmed the mineralization of the plasma-treated scaffolds, indicative of maturation of the differentiated cells. This work thus concentrates on harnessing the potential of plasma treatment, for improving the osteoconductivity of fibrous scaffolds, which could be used for bone tissue engineering/regenerative medicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available