4.2 Article

Characteristics of High-Molecular-Weight Hyaluronic Acid as a Brain-Derived Neurotrophic Factor Scaffold in Periodontal Tissue Regeneration

Journal

TISSUE ENGINEERING PART A
Volume 17, Issue 7-8, Pages 955-967

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2010.0070

Keywords

-

Funding

  1. Japan Society for the Promotion of Science, Japan [21390557, 20791466]
  2. Grants-in-Aid for Scientific Research [22592334, 21390557, 20791466] Funding Source: KAKEN

Ask authors/readers for more resources

Brain-derived neurotrophic factor (BDNF), for which bovine collagen-derived atelocollagen is used as a scaffold, enhances periodontal tissue regeneration. However, a scaffold that does not contain unknown ingredients is preferable. Since the synthesized high-molecular-weight (HMW)-hyaluronic acid (HA) is safe and inexpensive, we evaluated the efficacy of HMW-HA as a BDNF scaffold. CD44, a major receptor of HA, was expressed in cultures of human periodontal ligament cells, and HMW-HA promoted the adhesion and proliferation of human periodontal ligament cells, although it did not influence the mRNA expression of bone (cementum)-related proteins. The in vitro release kinetics of BDNF from HMW-HA showed that BDNF release was sustained for 14 days. Subsequently, we examined the effect of BDNF/HMW-HA complex on periodontal tissue regeneration in dogs. A greater volume of newly formed alveolar bone and a longer newly formed cementum were observed in the BDNF/HMW-HA group than in the HMW-HA group, suggesting that HMW-HA assists the regenerative capacity of BDNF, although HMW-HA itself does not enhance periodontal tissue regeneration. Neither the poly (lactic-co-glycolic acid) group nor the BDNF/poly (lactic-co-glycolic acid) group enhanced periodontal tissue regeneration. In conclusion, HMW-HA is an adequate scaffold for the clinical application of BDNF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available