4.2 Article

Use of Tissue-Engineered Nerve Grafts Consisting of a Chitosan/Poly(lactic-co-glycolic acid)-Based Scaffold Included with Bone Marrow Mesenchymal Cells for Bridging 50-mm Dog Sciatic Nerve Gaps

Journal

TISSUE ENGINEERING PART A
Volume 16, Issue 12, Pages 3779-3790

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2010.0299

Keywords

-

Funding

  1. Hi-Tech Research and Development Program of China (863 Program) [2006AA02A128]
  2. Nature Science Foundation of China [30670667, 30770585]

Ask authors/readers for more resources

Bone marrow mesenchymal cells (MSCs) have attracted increasing research interest due to their possible use as support cells for nerve tissue-engineering approaches. We developed a novel design of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid) (PLGA)-based neural scaffold included with autologous MSCs. The graft was used as an alternative to nerve autografts for bridging 50-mm-long gaps in dog sciatic nerve, and the repair outcome at 6 months after nerve grafting was evaluated by a combination of electrophysiological assessment, FluoroGold retrograde tracing, and histological investigation to regenerated nerve tissue and reinnervated target muscle. The experimental results indicated that introduction of autologous MSCs to the chitosan/PLGA-based neural scaffold promoted sciatic nerve regeneration and functional recovery, demonstrating significant efficacy that was, to a certain degree, close to that by nerve autografting, a gold standard for treating large peripheral nerve gaps, and better than that by grafting with the chitosan/PLGA-based scaffold alone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available