4.2 Article

Interstitial Fluid Flow Intensity Modulates Endothelial Sprouting in Restricted Src-Activated Cell Clusters During Capillary Morphogenesis

Journal

TISSUE ENGINEERING PART A
Volume 15, Issue 1, Pages 175-185

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2007.0314

Keywords

-

Funding

  1. Draper Laboratories Research
  2. National Institutes of Health [1-RO1-EB003805-01A1]
  3. Leipzig University, Germany [1098SF TRM]
  4. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R01EB003805] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Development of tissues in vitro with dimensions larger than 150 to 200 mm requires the presence of a functional vascular network. Therefore, we have studied capillary morphogenesis under controlled biological and biophysical conditions with the aim of promoting vascular structures in tissue constructs. We and others have previously demonstrated that physiological values of interstitial fluid flow normal to an endothelial monolayer in combination with vascular endothelial growth factor play a critical role during capillary morphogenesis by promoting cell sprouting. In the present work, we studied the effect that a range of interstitial flow velocities (0-50 mu m/min) has in promoting the amount, length, and branching of developing sprouts during capillary morphogenesis. The number of capillary-like structures developed from human umbilical vein endothelial cell monolayers across the interstitial flow values tested was not significantly affected. Instead, the length and branching degree of the sprouts presented a significant maximum at flow velocities of 10 to 20 mm/min. Moreover, at these same flow values, the phosphorylation level of Src also showed its peak. We discovered that capillary morphogenesis is restricted to patches of Src-activated cells (phosphorylated Src (pSrc)) at the monolayer, suggesting that the transduction pathway in charge of sensing the mechanical stimulus induced by flow is promoting predetermined mechanically sensitive areas (pSrc) to undergo capillary morphogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available