4.2 Article

Poly(lactic-co-glycolic acid) Bone Scaffolds with Inverted Colloidal Crystal Geometry

Journal

TISSUE ENGINEERING PART A
Volume 14, Issue 10, Pages 1639-1649

Publisher

MARY ANN LIEBERT INC
DOI: 10.1089/ten.tea.2007.0142

Keywords

-

Funding

  1. National Institutes of Health (NIH) [5R01EB007350-02]

Ask authors/readers for more resources

Controllability of scaffold architecture is essential to meet specific criteria for bone tissue engineering implants, including adequate porosity, interconnectivity, and mechanical properties to promote bone growth. Many current scaffold manufacturing techniques induce random porosity in bulk materials, requiring high porosities (>95%) to guarantee complete interconnectivity, but the high porosity sacrifices mechanical properties. Additionally, the stochastic arrangement of pores causes scaffold-to-scaffold variation. Here, we introduce a biodegradable poly(lactic-co-glycolic acid) (PLGA) scaffold with an inverted colloidal crystal (ICC) structure that provides a highly ordered arrangement of identical spherical cavities. Colloidal crystals (CCs) were constructed with soda lime beads of 100-, 200-, and 330-mu m diameters. After the CCs were annealed, they were infiltrated with 85:15 PLGA. The method of construction and highly ordered structure allowed for ease of control over cavity and interconnecting channel diameters and for full interconnectivity at lower porosities. The scaffolds demonstrated high mechanical properties for PLGA alone (> 50 MPa), in vitro biocompatibility, and maintenance of osteoblast phenotype, making them promising for a highly controllable bone tissue engineering scaffold.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available