4.6 Article

Distribution and Dynamics of 99mTc-Pertechnetate Uptake in the Thyroid and Other Organs Assessed by Single-Photon Emission Computed Tomography in Living Mice

Journal

THYROID
Volume 20, Issue 5, Pages 519-526

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/thy.2009.0213

Keywords

-

Funding

  1. Electricite de France
  2. Conseil General 06

Ask authors/readers for more resources

Background: Tc-99m pertechnetate is a well-known anion, used for clinical imaging of thyroid function. This gamma emitter is transported by the sodium iodide symporter but is not incorporated into thyroglobulin. Scintigraphy using Tc-99m pertechnetate or 123 iodide represents a powerful tool for the study of sodium iodide symporter activity in different organs of living animal models. However, in many studies that have been performed in mice, the thyroid could not be distinguished from the salivary glands. In this work, we have evaluated the use of a clinically dedicated single-photon emission computed tomography (SPECT) camera for thyroid imaging and assessed what improvements are necessary for the development of this technique. Methods: SPECT of the mouse neck region, with pinhole collimation and geometric calibration, was used for the individual measurement of Tc-99m pertechnetate uptake in the thyroid and the salivary glands. Uptake in the stomach was studied by planar whole-body imaging. Uptake kinetics and biodistribution studies were performed by sequential imaging. Results: This work has shown that thyroid imaging in living mice can be performed with a SPECT camera originally built for clinical use. Our experiments indicate that Tc-99m pertechnetate uptake is faster in the thyroid than in the salivary glands and the stomach. The decrease in Tc-99m pertechnetate uptake after injection of iodide or perchlorate as competitive inhibitors was also studied. The resulting rate decreases were faster in the thyroid than in the salivary glands or the stomach. Conclusions: We have shown that a clinically dedicated SPECT camera can be used for thyroid imaging. In our experiments, SPECT imaging allowed the analysis of Tc-99m pertechnetate accumulation in individual organs and revealed differences in uptake kinetics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available