4.6 Article

Coagulation Factor Xa inhibits cancer cell migration via Protease-activated receptor-1 activation

Journal

THROMBOSIS RESEARCH
Volume 124, Issue 2, Pages 219-225

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.thromres.2009.01.015

Keywords

Coagulation factor Xa; Cancer cell; Cell migration; Protease activated receptor; Signaling

Funding

  1. NWO
  2. STW Technology Foundation

Ask authors/readers for more resources

Cell migration is critically important in (patho) physiological processes. The metastatic potential of cancer cells partly depends on activation of the coagulation cascade. The aim of the present study was to determine whether coagulation factor X (FXa) can regulate the migration and invasion of cancer cells. Quite unexpectedly, we found that FXa markedly diminished the migration of different cancer cell lines of various origins (breast, lung and colon cancer cells). We showed that FXa mediated inhibition of cancer cell migration was specific, as it was inhibited by TAP (a specific FXa inhibitor) but not by Hirudin (a specific thrombin inhibitor). Moreover, the FXa effect was dose dependent, with a maximal inhibitory effect reached at 0.75 U/ml FXa (corresponding to 130.5 nM). Next, we determined that FXa acted via protease-activated receptor (PAR)-1-dependent signaling, and PAR-1 desensitization, as well as knocking-down PAR-1 expression, abolished the FXa effects. Finally, we showed that Gi alpha was not involved in FXa mediated inhibition of cell migration as its effects were not reverted by pertussis toxin. These results suggest that, beyond its role in blood coagulation, FXa plays a key role in cancer cell migration. They also shed light on an unexpected role of PAR-1, which appears to be a Janus-like receptor in cancer cell biology. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available