4.6 Article

An ultrastructural study of Porphyromonas gingivalis-induced platelet aggregation

Journal

THROMBOSIS RESEARCH
Volume 122, Issue 6, Pages 810-819

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.thromres.2008.03.011

Keywords

Porphyromonas gingivalis; Platelets; Aggregation; Electron microscopy; Ruthenium red; Phagocytosis

Funding

  1. Ministry of Education, Science, Sports and Culture of Japan

Ask authors/readers for more resources

One of the major pathogens of periodontitis, Porphyromonas gingivalis (P. gingivalis), has the ability to aggregate human platelets. To investigate the interaction between P. gingivalis and human platelets in platelet rich plasma (PRP), platelet aggregation was measured by an aggregometer based on laser tight scattering (LS) methods, and an uttrastructurat study was performed using electron microscopy. A sharp and rapid increase of small-sized platelet aggregates was observed immediately after the addition of P. gingivalis to PRP, followed by the formation of medium- and large-sized aggregates in 2-3 min. In contrast, when Staphylococcus aureus (S. aureus) was used in the control experiment, only a slight increase in small-sized aggregates was detected. By electron microscopy, discoid-shaped platelets were observed prior to adding P. gingivalis. By 5 min after the addition of the bacteria, enormous platelet aggregates were observable. Most of the P. gingivalis were present between the adherent platelets, white some were internalized in platelet engulfment vacuoles. In contrast, when washed platelets were incubated with the bacteria under a non-stirring condition to prevent platelet aggregation, and stained with ruthenium red (RR) as an electron dense tracer of the cell surface including the open canalicular system (OCS), both RR-positive and -negative vacuoles containing P. gingivalis were identified in the activated platelets. Thus, this observation suggests that P. gingivalis residing in the RR-negative vacuoles is incorporated into the platelet cytoplasm by phagocytosis. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available