4.7 Review

Advances in MoS2-Based Field Effect Transistors (FETs)

Journal

NANO-MICRO LETTERS
Volume 7, Issue 3, Pages 203-218

Publisher

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-015-0034-8

Keywords

MoS2 FETs engineering; Low-frequency noise; Optical properties; MoS2 sensors; MoS2 memory devices

Ask authors/readers for more resources

This paper reviews the original achievements and advances regarding the field effect transistor (FET) fabricated from one of the most studied transition metal dichalcogenides: two-dimensional MoS2. Not like graphene, which is highlighted by a gapless Dirac cone band structure, Monolayer MoS2 is featured with a 1.9 eV gapped direct energy band thus facilitates convenient electronic and/or optoelectronic modulation of its physical properties in FET structure. Indeed, many MoS2 devices based on FET architecture such as phototransistors, memory devices, and sensors have been studied and extraordinary properties such as excellent mobility, ON/OFF ratio, and sensitivity of these devices have been exhibited. However, further developments in FET device applications depend a lot on if novel physics would be involved in them. In this review, an overview on advances and developments in the MoS2-based FETs are presented. Engineering of MoS2-based FETs will be discussed in details for understanding contact physics, formation of gate dielectric, and doping strategies. Also reported are demonstrations of device behaviors such as low-frequency noise and photoresponse in MoS2-based FETs, which is crucial for developing electronic and optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available