4.4 Article

First-principles study of Sc-doping effect on the stability, electronic structure and photocatalytic properties of Sr2TiO4

Journal

THIN SOLID FILMS
Volume 542, Issue -, Pages 276-280

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2013.06.067

Keywords

Layered perovskite oxide; Transition metal doping; Electronic structure; Photocatalytic properties

Funding

  1. Natural Science Basic Research Plan in Shaanxi Province of China [2011JQ8034]
  2. Open Foundation of Key Laboratory of Photoelectronic Technology of Shaanxi Province [ZS11009]
  3. Science Foundation of Northwest University [10NW08, PR10069]
  4. NWU Graduate Innovation and Creativity Funds [09YZZ64]
  5. Scientific Research Program
  6. Shaanxi Provincial Education Department [11JK0831]

Ask authors/readers for more resources

The stability, electronic structure and photocatalytic properties of the Sc-doped Sr2TiO4 are investigated by first-principles calculations based on the density functional theory. The calculated results reveal that due to the electronic changes from doping, the stability of Sr2Sc0.125Ti0.875O4 is weakened after Sc doping. Meanwhile, because the increase value of lattice parameter a is larger than that of lattice parameter c, the value of c/a decreases to 3.209 and is smaller than that of undoped Sr2TiO4. The band gap of Sr2Sc0.125Ti0.875O4 has a narrowing about 0.25 eV compared with that of undoped Sr2TiO4, resulting in the red-shift of absorption spectra edge. Particularly, the dispersion of the conduction bands and valence bands of Sr2Sc0.125Ti0.875O4 is enhanced after doping, which is preferable for the photocatalytic performance. In addition, a new weak absorption appears in the visible light region, which would somehow contribute to the photocatalytic activity of Sr2Sc0.125Ti0.875O4. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available