4.4 Article

Exploring new W-B coating materials for the aqueous corrosion-wear protection of austenitic stainless steel

Journal

THIN SOLID FILMS
Volume 549, Issue -, Pages 204-215

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2013.09.035

Keywords

Magnetron sputtering; Tribocorrosion; Corrosion-wear; Tungsten borides; CrN

Funding

  1. University of Malta
  2. Engineering and Physical Sciences Research Council (EPSRC)

Ask authors/readers for more resources

The material loss of metallic surfaces through corrosion-wear is a serious concern in many application sectors, ranging from bio-medical implants to marine, oil and gas field components to transport vehicle and nuclear reactor devices. In principle, self-passivating alloys, like stainless steels, can be protected from surface degradation caused by corrosion-wear through the application of protective thin, hard surface coatings. In this work the suitability of using W matrix coating materials supersaturated with varying levels of boron were applied to austenitic stainless steel substrates (Ortron 90) and assessed for this purpose. These materials were compared to a highly corrosion-wear resistant datum surface engineered material (CrN coated Ti-6Al-4V) in sliding contact tests against a chemically inert aluminium oxide ball, whilst immersed in 0.9% NaCl solution at 37 degrees C. The work demonstrated that all the coated materials to be very much more resistant to material loss through corrosion-wear (by nearly an order of magnitude) compared to uncoated stainless steel, and two coatings, W-13%B and W-23%B coated Ortron 90 were similarly resistant as CrN coated Ti-6Al-4V. Three fundamental types of corrosion-wear were discovered that represented differing levels of passive film durability. The total material loss rate (TMLR) during corrosion-wear testing showed linear proportionality with the change in open circuit potential delta(OCP) which obeyed the governing equation: TMLR = m delta(OCP) + C. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available