4.4 Article

Organic ultrathin film adhesion on compliant substrate using scratch test technique

Journal

THIN SOLID FILMS
Volume 528, Issue -, Pages 194-198

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2012.07.138

Keywords

Nanoscratch; Adhesion; Flexible substrate; Organic electronics; Thin layer; Delamination

Ask authors/readers for more resources

Many adhesion test techniques have been developed to measure the adhesion energy of thin films but they are hard to implement in the case of submicron organic thin films deposited on a flexible substrate. Recently the feasibility and repeatability of the scratch test technique as a tool for testing the adhesion and the damage behaviour of ultra-thin films on polymer substrates has been demonstrated. However, direct comparison of the critical load between samples was not straightforward since different failure mechanisms were induced. In the present work, we have performed nanoscratch experiments on submicron thin films deposited on a flexible substrate. The use of a tip radius of 5 mu m enabled a unique delamination mechanism to be induced by localizing and maximizing the stress closer to the interface. We have observed an increase of the critical load on samples processed with an adhesive plasma treatment prior to thin film deposition, confirming the effectiveness of this treatment. We have also performed mechanical ageing tests on specimens and proved that the scratch test technique is sensitive enough to monitor the degradation of the interface properties. Finally, we have discussed some existing energy models. Taking into account some limitations, Laugier's model gives an upper bound for the adhesion energy. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available