4.4 Article Proceedings Paper

ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor

Journal

THIN SOLID FILMS
Volume 516, Issue 7, Pages 1523-1528

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2007.03.144

Keywords

atomic layer deposition; rf sputtering; ZnO; transparent TFT

Funding

  1. National Research Foundation of Korea [과C6A2006, 2007-331-D00243] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Recently, the application of ZnO thin films as an active channel layer of transparent thin film transistor (TFT) has become of great interest. In this study, we deposited ZnO thin films by atomic layer deposition (ALD) from diethyl Zn (DEZ) as a metal precursor and water as a reactant at growth temperatures between 100 and 250 degrees C. At typical growth conditions, pure ZnO thin films were obtained without any detectable carbon contamination. For comparison of key film properties including microstructure and chemical and electrical properties, ZnO films were also prepared by rf sputtering at room temperature. The microstructure analyses by X-ray diffraction have shown that both of the ALD and sputtered ZnO thin films have (002) preferred orientation. At low growth temperature T-s <= 125 degrees C, ALD ZnO films have high resistivity (>10 Omega cm) with small mobility (<3 cm(2)/Vs), while the ones prepared at higher temperature have lower resistivity (<0.02 Omega cm) with higher mobility (>15 cm(2)/V s). Meanwhile, sputtered ZnO films have much higher resistivity than ALD ZnO at most of the growth conditions studied. Based upon the experimental results, the electrical properties of ZnO thin films depending on the growth conditions for application as an active channel layer of TFT were discussed focusing on the comparisons between ALD and sputtering. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available