4.5 Article

Thermal analysis of power LED employing dual interface method and water flow as a cooling system

Journal

THERMOCHIMICA ACTA
Volume 523, Issue 1-2, Pages 237-244

Publisher

ELSEVIER
DOI: 10.1016/j.tca.2011.06.001

Keywords

Junction to board thermal resistance; Junction to ambient thermal resistance; Dual interface method; Water flow system; Optical performance

Ask authors/readers for more resources

Thermal transient measurement based on structure function evaluation was used to measure the thermal resistance. The study signifies the importance of dual interface method in determining the exact point of separation between the board and the LED package. For a constant ambient temperature which was maintained at 28.2 +/- 1.0 degrees C at 700 mA, the junction to board thermal resistance obtained was 10.84 K/W. In addition, an experimental set up has been reported in this work having a constant water flow beneath the external heat sink. More emphasis has been given in studying the effect of change of such measurement environment on the junction to board thermal resistance. It was revealed that the junction to board thermal resistance was not affected but the total real thermal resistance from junction to ambient was reduced significantly by 55.6% upon cooling with water. A study on the effect of light output on the total thermal resistance was performed and it was revealed that the efficiency and the reliability of an LED are strongly dependent on the optical properties of the device. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available