4.6 Article

Uterine gland development begins postnatally and is accompanied by estrogen and progesterone receptor expression in the dog

Journal

THERIOGENOLOGY
Volume 78, Issue 8, Pages 1787-1795

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.theriogenology.2012.05.028

Keywords

Adenogenesis; Uterus; ESR1; PGR; Canine

Funding

  1. Morris Animal Foundation
  2. University of Illinois
  3. University of Florida
  4. Research Facilities Improvement Program from National Center for Research Resources, National Institutes of Health [C06 RR16515]
  5. National Center for Research Resources, NIH [T35 RR020292]

Ask authors/readers for more resources

During neonatal and juvenile life, mammalian uteri undergo extensive structural and functional changes, including uterine gland differentiation and development. In sheep and mice, inhibition of neonatal uterine gland development induced by progestin treatment led to a permanent aglandular uterine phenotype and adult infertility, suggesting that this strategy might be useful for sterilizing dogs and other companion animals. The goal of this study was to define temporal patterns of adenogenesis (gland development), cell proliferation, and progesterone and estrogen receptor expression in uteri of neonatal and juvenile dogs as a first step toward determining whether neonatal progestin treatments might be a feasible contraceptive approach in this species. Uteri obtained from puppies at postnatal wk 1, 2, 4, 6, or 8 were evaluated histologically and immunostained for MKI67, a marker of cell proliferation, estrogen receptor-1, and progesterone receptor. Adenogenesis was under way at 1 wk of age, as indicated by the presence of nascent glands beginning to bud from the luminal epithelium, and rapid proliferation of both luminal epithelial and stromal cells. By Week 2, glands were clearly identifiable and proliferation of luminal, glandular, and stromal cells was pronounced. At Week 4, increased numbers of endometrial glands were evident penetrating uterine stroma, even as proliferative activity decreased in all cell compartments as compared with Week 2. Whereas gland development was most advanced at Weeks 6 to 8, lumina!, glandular, and stromal proliferation was minimal, indicating that the uterus was nearly mitotically quiescent at this age. Both estrogen receptor-1 and progesterone receptor were expressed consistently in uterine stromal and epithelial cells at all ages examined. In summary, canine uterine adenogenesis was underway by 1 wk of age and prepubertal glandular proliferation was essentially complete by Week 6. These results provided information necessary to facilitate development of canine sterilization strategies based on neonatal progestin treatments designed to permanently inhibit uterine gland development and adult fertility. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available