4.0 Article

The role of epistasis on the evolution of recombination in host-parasite coevolution

Journal

THEORETICAL POPULATION BIOLOGY
Volume 75, Issue 1, Pages 1-13

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.tpb.2008.09.007

Keywords

Red queen; Host-parasite interactions; Coevolution; Genetic systems; Sexual reproduction; Population genetics

Funding

  1. Swiss National Science Foundation

Ask authors/readers for more resources

Antagonistic coevolution between hosts and parasites is known to affect selection on recombination in hosts. The Red Queen Hypothesis (RQH) posits that genetic shuffling is beneficial for hosts because it quickly creates resistant genotypes. Indeed, a large body of theoretical studies have shown that for many models of the genetic interaction between host and parasite, the coevolutionary dynamics of hosts and parasites generate selection for recombination or sexual reproduction. Here we investigate models in which the effect of the host on the parasite (and vice versa) depend approximately multiplicatively on the number of matched alleles. Contrary to expectation, these models generate a dynamical behavior that strongly selects against recombination/sex. We investigate this atypical behavior analytically and numerically. Specifically we show that two complementary equilibria are responsible for generating strong linkage disequilibria of opposite sign, which in turn causes strong selection against sex. The biological relevance of this finding stems from the fact that these phenomena can also be observed if hosts are attacked by two parasites that affect host fitness independently. Hence the role of the Red Queen Hypothesis in natural host parasite systems where infection by multiple parasites is the rule rather than the exception needs to be reevaluated. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available