4.2 Article

Polarisable multipolar electrostatics from the machine learning method Kriging: an application to alanine

Journal

THEORETICAL CHEMISTRY ACCOUNTS
Volume 131, Issue 3, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00214-012-1137-7

Keywords

Quantum chemical topology; Force field; Multipole moment; Polarisation; Atoms in molecules; Machine learning

Funding

  1. EPSRC

Ask authors/readers for more resources

We present a polarisable multipolar interatomic electrostatic potential energy function for force fields and describe its application to the pilot molecule MeNH-Ala-COMe (AlaD). The total electrostatic energy associated with 1, 4 and higher interactions is partitioned into atomic contributions by application of quantum chemical topology (QCT). The exact atom-atom interaction is expressed in terms of atomic multipole moments. The machine learning method Kriging is used to model the dependence of these multipole moments on the conformation of the entire molecule. The resulting models are able to predict the QCT-partitioned multipole moments for arbitrary chemically relevant molecular geometries. The interaction energies between atoms are predicted for these geometries and compared to their true values. The computational expense of the procedure is compared to that of the point charge formalism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available