4.2 Article

Basis set effects on Cu(I) coordination in Cu-ZSM-5: a computational study

Journal

THEORETICAL CHEMISTRY ACCOUNTS
Volume 131, Issue 3, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00214-012-1180-4

Keywords

Zeolites; Cu-ZSM-5; Nitrogen oxide; DFT

Ask authors/readers for more resources

DFT calculations on the coordination of Cu+ to the framework oxygen atoms of Al-substituted ZSM-5 were performed by using combinations of different basis sets in order to investigate the dependence of the results on the adopted computational level. With low-end basis sets, a large basis set superposition error (BSSE) favors the coordination of Cu+ to three to four oxygen atoms of the framework, only two of which belong to the AlO4 tetrahedron corresponding to the investigated T-site. More extended basis sets considerably lower the BSSE and favor the coordination of Cu+ to only two oxygen atoms of the AlO4 tetrahedron. Upon interaction with NO, the Cu+ ion is always coordinated by two oxygen atoms of the AlO4 tetrahedron, independently of the basis set adopted and of the coordination number before NO adsorption. The shift from three-to twofold coordination caused by the Cu+-NO interaction requires a deformation energy that lowers the final adsorption energy. Such an effect is relevant with low-end basis sets, whereas it is substantially absent with more extended basis sets, which favor the twofold coordination of Cu+ even before NO adsorption. As a result, high-end basis sets increase the NO interaction energy with respect to that calculated by low-end basis sets, in agreement with experiments and suggesting a possible re-interpretation of the catalytic properties of the investigated sites. Provided suitable scale factors are employed, the N-O stretching frequencies of adsorbed nitrogen oxide calculated by sufficiently extended basis sets turned out in fair agreement with experimental findings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available