4.7 Article

Fine mapping and identification of candidate genes controlling the resistance to southern root-knot nematode in PI 96354

Journal

THEORETICAL AND APPLIED GENETICS
Volume 126, Issue 7, Pages 1825-1838

Publisher

SPRINGER
DOI: 10.1007/s00122-013-2095-8

Keywords

-

Funding

  1. United Soybean Board
  2. Georgia Agricultural Experiment Stations

Ask authors/readers for more resources

Meloidogyne incognita (Kofoid and White) Chitwood (Mi) is the most economically damaging species of the root-knot nematode to soybean and other crops in the southern USA. PI 96354 was identified to carry a high level of resistance to galling and Mi egg production. Two Quantitative Trait Locus (QTLs) were found to condition the resistance in PI 96354 including a major QTL and a minor QTL on chromosome 10 and chromosome 18, respectively. To fine map the major QTL on chromosome 10, F-5:6 recombinant inbred lines from the cross between PI 96354 and susceptible genotype Bossier were genotyped with Simple Sequence Repeats (SSR) markers to identify recombinational events. Analysis of lines carrying key recombination events placed the Mi-resistant allele on chromosome 10 to a 235-kb region of the 'Williams 82' genome sequence with 30 annotated genes. Candidate gene analysis identified four genes with cell wall modification function that have several mutations in promoter, exon, 5', and 3'UTR regions. qPCR analysis showed significant difference in expression levels of these four genes in Bossier compared to PI 96354 in the presence of Mi. Thirty Mi-resistant soybean lines were found to have same SNPs in these 4 candidate genes as PI 96354 while 12 Mi-susceptible lines possess the 'Bossier' genotype. The mutant SNPs were used to develop KASP assays to detect the resistant allele on chromosome 10. The four candidate genes identified in this study can be used in further studies to investigate the role of cell wall modification genes in conferring Mi resistance in PI 96354.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available