4.7 Article

Use of mutant-assisted gene identification and characterization (MAGIC) to identify novel genetic loci that modify the maize hypersensitive response

Journal

THEORETICAL AND APPLIED GENETICS
Volume 123, Issue 6, Pages 985-997

Publisher

SPRINGER
DOI: 10.1007/s00122-011-1641-5

Keywords

-

Funding

  1. USDA-ARS
  2. Purdue University
  3. NSF [0822495]
  4. Division Of Integrative Organismal Systems
  5. Direct For Biological Sciences [0822495] Funding Source: National Science Foundation

Ask authors/readers for more resources

The partially dominant, autoactive maize disease resistance gene Rp1-D21 causes hypersensitive response (HR) lesions to form spontaneously on leaves and stems in the absence of pathogen recognition. The maize nested association mapping (NAM) population consists of 25 200-line subpopulations each derived from a cross between the maize line B73 and one of 25 diverse inbred lines. By crossing a line carrying the Rp1-D21 gene with lines from three of these subpopulations and assessing the F-1 progeny, we were able to map several novel loci that modify the maize HR, using both single-population quantitative trait locus (QTL) and joint analysis of all three populations. Joint analysis detected QTL in greater number and with greater confidence and precision than did single population analysis. In particular, QTL were detected in bins 1.02, 4.04, 9.03, and 10.03. We have previously termed this technique, in which a mutant phenotype is used as a reporter for a trait of interest, Mutant-Assisted Gene Identification and Characterization (MAGIC).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available