4.7 Article

Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice

Journal

THEORETICAL AND APPLIED GENETICS
Volume 122, Issue 5, Pages 905-913

Publisher

SPRINGER
DOI: 10.1007/s00122-010-1497-0

Keywords

-

Funding

  1. National Program of High Technology Development of China
  2. National Natural Science Foundation of China

Ask authors/readers for more resources

The gene GS3 has major effect on grain size and plays an important role in rice breeding. The C to A mutation in the second exon of GS3 was reported to be functionally associated with enhanced grain length in rice. In the present study, besides the C-A mutation at locus SF28, three novel polymorphic loci, SR17, RGS1, and RGS2, were discovered in the second intron, the last intron and the final exon of GS3, respectively. A number of alleles at these four polymorphic loci were observed in a total of 287 accessions including Chinese rice varieties (Oryza sativa), African cultivated rice (O. glaberrima) and AA-genome wild relatives. The haplotype analysis revealed that the simple sequence repeats (AT)(n) at RGS1 and (TCC)(n) at RGS2 had differentiated in the wild rice whilst the C-A mutation occurred in the cultivated rice recently during domestication. It also indicated that A allele at SF28 was highly associated with long rice grain whilst various motifs of (AT)(n) at RGS1 and (TCC)(n) at RGS2 were mainly associated with medium to short grain in Chinese rice. The C-A mutation at SF28 explained 33.4% of the grain length variation in the whole rice population tested in this study, whereas (AT)(n) at RGS1 and (TCC)(n) at RGS2 explained 26.4 and 26.2% of the variation, respectively. These results would be helpful for better understanding domestication of GS3 and its manipulation for grain size in rice. The genic marker RGS1 based on the motifs (AT)(n) was further validated as a functional marker using two sets of backcross recombinant inbred lines. These results suggested that the functional markers developed from four different loci within GS3 could be used for fine marker-assisted selection of grain length in rice breeding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available