4.7 Article

Multiple quantitative trait loci Haseman-Elston regression using all markers on the entire genome

Journal

THEORETICAL AND APPLIED GENETICS
Volume 117, Issue 5, Pages 683-690

Publisher

SPRINGER
DOI: 10.1007/s00122-008-0809-0

Keywords

-

Ask authors/readers for more resources

The Haseman-Elston (HE) regression, developed in the 1970s, remains in common use to detect genetic linkage between a quantitative trait and a genetic marker. Although the technique has been improved in a number of ways, it predicts a high rate of false positive quantitative trait locus (QTL) because it is based on a single-QTL model. We have extended the origin HE regression to multi-QTL HE (MQHE) regression, so that all markers across the entire genome can be exploited simultaneously. The parameters have been estimated by the penalized maximum likelihood method, and several response variables for phenotypic difference have been compared in order to optimize the procedure. The method has been tested by simulation in a pedigree population of maize inbred lines of known ancestry. These simulations show that the trait product is the optimal response variable for phenotypic difference. The false positive rate produced by the MQHE regression is substantially lower than that generated by either variance component analysis or the origin HE regression. The MQHE regression, with the trait product as the response variable, represents a significant improvement on existing methods for QTL mapping in a set of inbred lines (or cultivars) of known ancestry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available