4.5 Article

Prediction of temperature and precipitation in Sudan and South Sudan by using LARS-WG in future

Journal

THEORETICAL AND APPLIED CLIMATOLOGY
Volume 113, Issue 3-4, Pages 363-375

Publisher

SPRINGER WIEN
DOI: 10.1007/s00704-012-0793-9

Keywords

-

Funding

  1. National Natural Science Fund of China [51279138]
  2. Research Council of Norway [171783]

Ask authors/readers for more resources

Global warming has brought great pressure on the environment and livelihood conditions in Sudan and South Sudan. It is desirable to analyze and predict the change of critical climatic variables, such as temperature and precipitation, which will provide valuable reference results for future water resources planning and management in the region. The aims of this study are to test the applicability of the Long Ashton Research Station Weather Generator (LARS-WG) model in downscaling daily precipitation and daily maximum (Tmax) and daily minimum (Tmin) temperatures in Sudan and South Sudan and use it to predict future changes of precipitation; Tmin and Tmax for nine stations in Sudan and South Sudan are based on the SRA2 scenario of seven General Circulation Models (GCMs) outputs for the periods of 2011-2030, 2046-2065, and 2080-2099. The results showed that (1) the LARS-WG model produces good performance in downscaling daily precipitation and excellent performance in downscaling Tmax and Tmin in the study region; (2) downscaled precipitation from the prediction of seven GCMs showed great inconsistency in these two regions, which illustrates the great uncertainty in GCMs' results in the regions; (3) predicted precipitation in rainy season JJA (June, July, and August) based on the ensemble mean of seven GCMs showed a decreasing trend in the periods of 2011-2030, 2046-2065, and 2080-2099 in Sudan; however, an increasing trend can be found in SON (September, October, and November) in the future; (4) precipitation in South Sudan has an increasing trend in most seasons in the future except in MAM (March, April, and May) season in 2011-2030; and (5) predictions from seven GCMs showed a similar and continuous increasing trend for Tmax and Tmin in all three future periods, which will bring severe negative influence on improving livelihoods and reducing poverty in Sudan and South Sudan.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available