4.5 Article

Differences Between Cotton and Viscose Fibers Crosslinked with BTCA

Journal

TEXTILE RESEARCH JOURNAL
Volume 80, Issue 4, Pages 383-392

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0040517509343818

Keywords

mercerized cotton fibers; viscose fibers; BTCA; FT-IR; breaking force; breaking elongation; methylene blue method

Ask authors/readers for more resources

Presently polycarboxylic acids are being used for cellulose crosslinking. Among these, 1,2,3,4-buthanetetracarboxylic acid (BTCA) is the most effective in combination with a corresponding catalyst. In this research, a comparison of crosslinking effects on mercerized cotton fibers and viscose was identified using certain physical-chemical methods. The extent of crosslinking was evaluated using Fourier transform infrared (FT-IR) spectroscopy. The crosslinking of cellulose increases wrinkle resistance and reduces the mechanical properties, therefore, for this purpose the wrinkle recovery angle and the breaking force, was evaluated together with breaking elongation. When considering the crosslinking mechanism, those additional free BTCA carboxyl groups that are accessible in the cellulose polymer reflect the effectiveness of cotton-fiber crosslinking. The evaluation of accessible carboxyl was performed using the methylene blue method, where the adsorption of methylene blue dye on the cellulose material was monitored spectroscopically. The purpose of this research is mainly (i) to evaluate how different types of cellulose matrices/substrates influence the crosslinking of fibers crosslinked with different mass fractions of BTCA and (ii) to establish the most appropriate mass fraction of BTCA in the impregnation bath for sufficient crosslinking of mercerized cotton fibers, as well as viscose.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available