4.6 Article

Restoration of Cenozoic deformation in Asia and the size of Greater India

Journal

TECTONICS
Volume 30, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011TC002908

Keywords

-

Funding

  1. Statoil
  2. Center for Advanced Study of the Norwegian Academy of Sciences
  3. Netherland's organization for scientific research (NWO-ALW)
  4. U.S. NSF
  5. Directorate For Geosciences
  6. Division Of Earth Sciences [0808976, 1008527] Funding Source: National Science Foundation

Ask authors/readers for more resources

A long-standing problem in the geological evolution of the India-Asia collision zone is how and where convergence between India and Asia was accommodated since collision. Proposed collision ages vary from 65 to 35 Ma, although most data sets are consistent with collision being underway by 50 Ma. Plate reconstructions show that since 50 Ma similar to 2400-3200 km (west to east) of India-Asia convergence occurred, much more than the 450-900 km of documented Himalayan shortening. Current models therefore suggest that most post-50 Ma convergence was accommodated north of the Indus-Yarlung suture zone. We review kinematic data and construct an updated restoration of Cenozoic Asian deformation to test this assumption. We show that geologic studies have documented 600-750 km of N-S Cenozoic shortening across, and north of, the Tibetan Plateau. The Pamir-Hindu Kush region accommodated similar to 1050 km of N-S convergence. Geological evidence from Tibet is inconsistent with models that propose 750-1250 km of eastward extrusion of Indochina. Approximately 250 km of Indochinese extrusion from 30 to 20 Ma of Indochina suggested by SE Asia reconstructions can be reconciled by dextral transpression in eastern Tibet. We use our reconstruction to calculate the required size of Greater India as a function of collision age. Even with a 35 Ma collision age, the size of Greater India is 2-3 times larger than Himalayan shortening. For a 50 Ma collision, the size of Greater India from west to east is similar to 1350-2600 km, consistent with robust paleomagnetic data from upper Cretaceous-Paleocene Tethyan Himalayan strata. These estimates for the size of Greater India far exceed documented shortening in the Himalaya. We conclude that most of Greater India was consumed by subduction or underthrusting, without leaving a geological record that has been recognized at the surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available