4.7 Article

Application of dispersive liquid-liquid microextraction for estrogens' quantification by enzyme-linked immunosorbent assay

Journal

TALANTA
Volume 125, Issue -, Pages 102-106

Publisher

ELSEVIER
DOI: 10.1016/j.talanta.2014.02.069

Keywords

DLLME; ELISA; Water samples; Environment; 17 beta-estradiol; 17 alpha-ethinylestradiol

Funding

  1. European Funds through COMPETE
  2. National Funds through the Portuguese Science Foundation (FCT) [PEst-C/MAR/LA0017/2013]
  3. FCT [SFRH/BPD/80315/2011, SFRH/BD/74430/2010]
  4. Spanish Ministry of Science and Innovation [RYC-2010-05634]

Ask authors/readers for more resources

Estrogens, such as 17 beta-estradiol (E2) and 17 alpha-ethinylestradiol (EE2), are the major responsible for endocrine-disrupting effects observed in aquatic environments due to their high estrogenic potency, even at concentrations ranging from pg L-1 to ng L-1. Thus, it is essential to develop analytical methodologies suitable for monitoring their presence in water samples. Dispersive liquid-liquid microextraction (DLLME) was used as a pre-concentration step prior to the quantification of E2 and EE2 by enzyme-linked immunosorbent assay (ELISA). First, an evaluation of the effect of DDLME on the E2 and EE2 ELISA calibration curves was performed. Since the extraction procedure itself had an influence on the ELISA optical density (OD), it became necessary to subject, not only the samples, but also all the standards to the DLLME process. Working ranges were determined, being between 1.2 and 8000 ng L-1, for E2, and between 0.22 and 1500 ng L-1, for EE2. The influence of organic matter, both in the extraction and quantification, was evaluated and it was observed that its presence in the solution did not affect considerably the calibration curve. Recovery rates were also determined, ranging from 77% to 106% for ultrapure water and from 104% to 115% for waste water samples, the most complex ones in what concerns matrix effects. Results obtained when applying the proposed method to real water samples can be considered quite satisfying. Moreover, the obtained working ranges encompass values generally reported in literature, confirming the practical use of the method for environmental samples. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available