4.7 Article

3D front face solid-phase fluorescence spectroscopy combined with Independent Components Analysis to characterize organic matter in model soils

Journal

TALANTA
Volume 125, Issue -, Pages 146-152

Publisher

ELSEVIER
DOI: 10.1016/j.talanta.2014.02.049

Keywords

3D front-face solid-phase fluorescence spectroscopy; Organic matter; Soil models; Independent Components Analysis

Ask authors/readers for more resources

Soil organic matter (SOM) is a very complex and heterogeneous system which complicates its characterization. In fact, the methods classically used to characterize SOM are time- and solvent-consuming and insufficiently informative. The aim of this work is to study the potential of 3D solid-phase front face fluorescence (3D-SPFFF) spectroscopy to quickly provide a relevant and objective characterization of SOM as an alternative to the existing methods. Different soil models were prepared to simulate natural soil composition and were analyzed by 3D front-face fluorescence spectroscopy without prior preparation. The spectra were then treated using Independent Components Analysis. In this way, different organic molecules such as cellulose, proteins and amino acids used in the soil models were identified. The results of this study clearly indicate that 3D-SPFFF spectroscopy could be an easy, reliable and practical analytical method that could be an alternative to the classical methods in order to study SOM. The use of solid samples revealed some interactions that may occur in natural soils (self-quenching in the case of cellulose) and gave more accurate fluorescence signals for different components of the analyzed soil models. Independent Components Analysis (ICA) has demonstrated its power to extract the most informative signals and thus facilitate the interpretation of the complex 3D fluorescence data. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available