4.7 Article

Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes

Journal

TALANTA
Volume 76, Issue 2, Pages 419-423

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.talanta.2008.03.028

Keywords

glucose oxidase; single-walled carbon nanotubes; chitosan; direct electron transfer; biosensor

Ask authors/readers for more resources

Single-walled carbon nanotubes (SWCNTs) selectively wrapped by a water-soluble, environmentally friendly, biocompatible polymer chitosan (CHI) were employed for the construction of a bioelectrochemical platform for the direct electron transfer (DET) of glucose oxidase (GOD) and biosensing purposes. Scanning electron microscopy and Raman spectroscopy were used to investigate the properties of the SWCNT-CHI film. The results show that the preferentially wrapped small-diameter SWCNTs are dispersed within the CHI film and exist on the surface of the electrode as small bundles. The DET between GOD and the electrode surface was observed with a formal potential of about ca. -460 mV vs. SCE in phosphate buffer solution. The heterogeneous electron transfer rate constant and the surface coverage of GOD are estimated to be 3.0 s(-1) and 1.3 X 10(-10) mol/cm(2), respectively. The experimental results demonstrate that the immobilized GOD retains its catalytic activity towards the oxidation of glucose. Such a GOD/SWCNT-CHI film-based biosensor not only exhibits a rapid response time, a wide linear rang and a low detection limits at a detection potential of -400 mV but also shows the effective anti-interference capability. Significantly improved analytical capabilities of the GOD/SWCNT-CHI/GC electrode could be ascribed to the unique properties of the individual SWCNTs and to the biocompatibility of CHI. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available