4.6 Article

Anchored Hybrid Enrichment for Massively High-Throughput Phylogenomics

Journal

SYSTEMATIC BIOLOGY
Volume 61, Issue 5, Pages 727-744

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/sysbio/sys049

Keywords

Anchor regions; anchored enrichment; anchored phylogenomics; highly conserved regions; hybrid enrichment; phylogenetics; phylogeography; sequence capture; ultraconserved elements

Funding

  1. Florida State University
  2. Division Of Environmental Biology
  3. Direct For Biological Sciences [1120516] Funding Source: National Science Foundation

Ask authors/readers for more resources

The field of phylogenetics is on the cusp of a major revolution, enabled by new methods of data collection that leverage both genomic resources and recent advances in DNA sequencing. Previous phylogenetic work has required labor-intensive marker development coupled with single-locus polymerase chain reaction and DNA sequencing on clade-by-clade and locus-by-locus basis. Here, we present a new, cost-efficient, and rapid approach to obtaining data from hundreds of loci for potentially hundreds of individuals for deep and shallow phylogenetic studies. Specifically, we designed probes for target enrichment of >500 loci in highly conserved anchor regions of vertebrate genomes (flanked by less conserved regions) from five model species and tested enrichment efficiency ill nonmodel species up to 508 million years divergent from the nearest model. We found that hybrid enrichment using conserved probes (anchored enrichment) can recover a large number of unlinked loci that are useful at a diversity of phylogenetic timescales. This new approach has the potential not only to expedite resolution of deep-scale portions of the Tree of Life but also to greatly accelerate resolution of the large number of shallow clades that remain unresolved. The combination of low cost (similar to 1% of the cost of traditional Sanger sequencing and similar to 3.5% of the cost of high-throughput amplicon sequencing for projects on the scale of 500 loci x 100 individuals) and rapid data collection (similar to 2 weeks of laboratory time) are expected to make this approach tractable even for researchers working on systems with limited or nonexistent genomic resources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available