4.6 Article

Overcoming Deep Roots, Fast Rates, and Short Internodes to Resolve the Ancient Rapid Radiation of Eupolypod II Ferns

Journal

SYSTEMATIC BIOLOGY
Volume 61, Issue 3, Pages 490-509

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/sysbio/sys001

Keywords

Moderate data; outgroup rooting; Phycas; phylogeny evaluation; rate heterogeneity; reduced consensus; star-tree paradox; Woodsiaceae

Funding

  1. National Science Foundation [DEB-0347840]
  2. NSF DDIG [DEB-1110767]
  3. Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) [2006-429]
  4. National Science Council of the Republic of China [NSC 97-2313-B-054-006-MY3]
  5. Duke University Department of Biology
  6. Society of Systematic Biologists
  7. Canadian National Science and Engineering Research Council (PGS-D)
  8. Direct For Biological Sciences
  9. Division Of Environmental Biology [1110652] Funding Source: National Science Foundation

Ask authors/readers for more resources

Backbone relationships within the large eupolypod II clade, which includes nearly a third of extant fern species, have resisted elucidation by both molecular and morphological data. Earlier studies suggest that much of the phylogenetic intractability of this group is due to three factors: (i) a long root that reduces apparent levels of support in the ingroup; (ii) long ingroup branches subtended by a series of very short backbone internodes (the ancient rapid radiation model); and (iii) significantly heterogeneous lineage-specific rates of substitution. To resolve the eupolypod II phylogeny, with a particular emphasis on the backbone internodes, we assembled a data set of five plastid loci (atpA, atpB, matK, rbcL, and trnG-R) from a sample of 81 accessions selected to capture the deepest divergences in the clade. We then evaluated our phylogenetic hypothesis against potential confounding factors, including those induced by rooting, ancient rapid radiation, rate heterogeneity, and the Bayesian star-tree paradox artifact. While the strong support we inferred for the backbone relationships proved robust to these potential problems, their investigation revealed unexpected model-mediated impacts of outgroup composition, divergent effects of methods for countering the star-tree paradox artifact, and gave no support to concerns about the applicability of the unrooted model to data sets with heterogeneous lineage-specific rates of substitution. This study is among few to investigate these factors with empirical data, and the first to compare the performance of the two primary methods for overcoming the Bayesian star-tree paradox artifact. Among the significant phylogenetic results is the near-complete support along the eupolypod II backbone, the demonstrated paraphyly of Woodsiaceae as currently circumscribed, and the well-supported placement of the enigmatic genera Homalosorus, Diplaziopsis, and Woodsia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available