4.6 Article

Phylogenetic Signal, Evolutionary Process, and Rate

Journal

SYSTEMATIC BIOLOGY
Volume 57, Issue 4, Pages 591-601

Publisher

OXFORD UNIV PRESS
DOI: 10.1080/10635150802302427

Keywords

Comparative method; evolutionary lability; functional constraint; genetic drift; niche conservatism; quantitative characters; phylogenetics

Ask authors/readers for more resources

A recent advance in the phylogenetic comparative analysis of continuous traits has been explicit, model-based measurement of phylogenetic signal in data sets composed of observations collected from species related by a phylogenetic tree. Phylogenetic signal is a measure of the statistical dependence among species' trait values due to their phylogenetic relationships. Although phylogenetic signal is a measure of pattern (statistical dependence), there has nonetheless been a widespread propensity in the literature to attribute this pattern to aspects of the evolutionary process or rate. This may be due, in part, to the perception that high evolutionary rate necessarily results in low phylogenetic signal; and, conversely, that low evolutionary rate or stabilizing selection results in high phylogenetic signal (due to the resulting high resemblance between related species). In this study, we use individual-based numerical simulations on stochastic phylogenetic trees to clarify the relationship between phylogenetic signal, rate, and evolutionary process. Under the simplest model for quantitative trait evolution, homogeneous rate genetic drift, there is no relation between evolutionary rate and phylogenetic signal. For other circumstances, such as functional constraint, fluctuating selection, niche conservatism, and evolutionary heterogeneity, the relationship between process, rate, and phylogenetic signal is complex. For these reasons, we recommend against interpretations of evolutionary process or rate based on estimates of phylogenetic signal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available