3.8 Article

Initial clinical experience with image-guided linear accelerator-based spinal radiosurgery for treatment of benign nerve sheath tumors

Journal

SURGICAL NEUROLOGY
Volume 72, Issue 6, Pages 668-675

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.surneu.2009.04.019

Keywords

Image-guided radiosurgery; Spinal nerve sheath tumor

Ask authors/readers for more resources

Background: Stereotactic radiosurgery has proven a safe and effective treatment of cranial nerve sheath tumors. A similar approach should be successful for histologically identical spinal nerve sheath tumors. Methods: The preliminary results of linear accelerator-based spinal radiosurgery were retrospectively reviewed for a group of 25 nerve sheath tumors. Tumor location was cervical 11, lumbar 10, and thoracic 4. Thirteen tumors caused sensory disturbance, 12 pain, and 9 weakness. Tumor size varied from 0.9 to 4.1 cm (median, 2.1 cm). Radiosurgery was performed with a 60-MV linear accelerator equipped with a micro-multileaf collimator. Median peripheral dose and prescription isodose were 12 Gy and 90%, respectively. Image guidance involved optical tracking of infrared reflectors, fusion of amorphous silicon radiographs with dynamically reconstructed digital radiographs, and automatic patient positioning. Follow-up varied from 12 to 58 months (median, 18). Results: There have been no local failures. Tumor size remained stable in 18 cases, and 7 (28%) demonstrated more than 2 mm reduction in tumor size. Of 34 neurologic symptoms, 4 improved. There has been no clinical or imaging evidence for spinal cord injury. One patient had transient increase in pain and one transient increase in numbness. Conclusions: Results of this limited experience indicate linear accelerator-based spinal radiosurgery is feasible for treatment of benign nerve sheath tumors. Further follow-up is necessary, but our results imply spinal radiosurgery may represent a therapeutic alternative to surgery for nerve sheath tumors. Symptom resolution may require a prescribed dose of more than 12 Gy. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available