4.2 Article

Ultrafast dynamics of nanoplasmonic stopped-light lasing

Journal

FARADAY DISCUSSIONS
Volume 178, Issue -, Pages 307-324

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4fd00181h

Keywords

-

Funding

  1. Leverhulme Trust
  2. Engineering and Physical Sciences Research Council (EPSRC) UK
  3. Engineering and Physical Sciences Research Council [1102238] Funding Source: researchfish

Ask authors/readers for more resources

We study the spatio-temporal dynamics of coherent amplification and lasing in planar gain-enhanced nanoplasmonic structures and show that a singularity in the density of optical states leads to a stopped-light feedback mechanism that allows for cavity-free photonic and surface-plasmon polariton nanolasing. We reveal that in the absence of cavity-induced feedback a phase-locked superposition of a quasi dispersion-free waveguide mode promotes the dynamic formation of a subwavelength lasing mode. Simulations on the basis of a full-time domain Maxwell-Bloch Langevin approach uncover a high spontaneous emission factor beta approximate to 0.9 and demonstrate that the stopped-light lasing/spasing mechanism is remarkably robust against interface roughness. Stopped-light surface-plasmon polariton lasing is shown to be stable for gain sections of a width of down to 200 nm but in wider gain structures of the order of 1 mu m the dynamics is characterised by spatio-temporally oscillating lasing surface-plasmon polaritons with typical temporal and spatial periods of smaller than 5 fs and smaller than 100 nm. Stopped-light lasing thus provides opportunities for ultrafast nanolasing and the realization of ultra-thin lasing surfaces and offers a new route to ultrafast spasing and cavity-free active quantum plasmonics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available