4.7 Review

Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy

Journal

SURFACE SCIENCE REPORTS
Volume 64, Issue 12, Pages 595-659

Publisher

ELSEVIER
DOI: 10.1016/j.surfrep.2009.07.004

Keywords

Scanning tunneling microscopy and spectroscopy; Oxide surfaces; Oxide defects; Adsorption; Adatoms and molecules; Oxide polarity

Funding

  1. Deutsche Forschungsgerneinschaft

Ask authors/readers for more resources

The preparation of thin oxide films on metal supports is a versatile approach to explore the properties of oxide materials that are otherwise inaccessible to most surface science techniques due to their insulating nature. Although substantial progress has been made in the characterization of oxide surfaces with spatially averaging techniques, a local view is often essential to provide comprehensive understanding of such systems. The scanning tunneling microscope (STM) is a powerful tool to obtain atomic-scale information on the growth behavior of oxide films, the resulting surface morphology and defect structure. Furthermore, the binding configuration and spatial distribution of adsorbates on the oxide surface, as well as their electronic and optical properties can be probed with the STM and embedded spectroscopic techniques. This article surveys state-of-the-art STM experiments aiming for an investigation of surface properties of oxide materials as well as their interaction with individual adatoms, molecules and metal particles. It provides an introduction into the nucleation and growth of oxide layers on single-crystalline metal substrates, putting special emphasis on the various relaxation mechanisms of the oxide lattice to release the misfit strain with the support. Additionally, the peculiarities of polar oxide films are discussed. In the second part, the different interaction schemes between oxide surfaces and adsorbates are presented from the theoretical point of view as well as on the basis of the key experiment performed with the STM. The focus lies hereby on charge-mediated binding schemes, leading to the formation of cationic or anionic species on the oxide surface. Furthermore, the role of point and line defects in the oxide adsorption behavior is inferred. The potential of thin oxide films as systems with tunable physical and chemical properties is highlighted at the end of this review. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available