4.4 Article

Spatial modulation of the Dirac gap in epitaxial graphene

Journal

SURFACE SCIENCE
Volume 602, Issue 22, Pages L127-L130

Publisher

ELSEVIER
DOI: 10.1016/j.susc.2008.09.030

Keywords

Epitaxial graphene; Scanning tunneling microscopy; Scanning tunneling spectroscopy

Funding

  1. European Community

Ask authors/readers for more resources

We use scanning tunneling spectroscopy (STS) at low temperatures to investigate the local electronic structure of mono- and bilayer graphene grown epitaxially on SiC(0001). Already for monolayer graphene, a gap opening is observed in the pi-bands at the Dirac point. The gap size is spatially modulated with the (6 root 3 x 6 root 3)R30 degrees periodicity of the interface structure. We ascribe this effect to a spatially dependent interface potential, which is imprinted into the graphene layer. For bilayer graphene the Dirac gap has a constant size, but a spatially localized mid-gap state is observed within. For both, gap state and pi-bands the intensities are strongly modulated with the atomic periodicity of graphene. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available