4.7 Article

Sources of air pollution in a region of oil and gas exploration downwind of a large city

Journal

ATMOSPHERIC ENVIRONMENT
Volume 120, Issue -, Pages 89-99

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2015.08.073

Keywords

Barnett shale; Hydraulic fracturing; Organic aerosols; PMF; VOCs; Photochemical reactivity

Funding

  1. Texas Commission for Environmental Quality Air Quality Research Program
  2. Camille and Henry Dreyfus Foundation

Ask authors/readers for more resources

The air quality in the outflow from Fort Worth, TX was studied in June 2011 at a location surrounded by oil and gas development in the Barnett Shale. The objectives of this study were to understand the major sources of volatile organic compounds (VOCs) and organic aerosols and explore the potential influence each VOC source had on ozone and secondary organic aerosol formation. Measurements of VOCs were apportioned between six factors using Positive Matrix Factorization (PMF): Natural Gas (25 +/- 2%; +/-99% CL); Fugitive Emissions (15 2%); Internal Combustion Engines (15 +/- 2%); Biogenic Emissions (7 +/- 1%); Industrial Emissions/Oxidation 1(8 +/- 1%); and Oxidation 2 (18 +/- 2%). Reactivity calculations suggest the Biogenic and Oxidation 2 factors were the most likely VOC sources to influence local ozone. However, enough OH reactivity was calculated for factors related to the oil and gas development that they could incrementally increase O-3. Three organic aerosol (OA) types were identified with PMF applied to high-resolution time-of-flight aerosol mass spectrometry measurements: hydrocarbon-like OA (HOA; 11% of mass) and two classes of oxidized OA (semi- and less-volatile OOA, SV and LV; 45% and 44%, respectively). HOA correlated with the Internal Combustion Engine VOC factor indicating that a large fraction of the HOA was emitted by gasoline and diesel motors. The SV-OOA correlated with the oxidized VOC factors during most of the study, whereas a correlation between LV-OOA and the oxidized VOC factors was only observed during part of the study. It is hypothesized that SV-OOA and the oxidized VOC factors correlated reasonably well because these factors likely were separated by at most only a few oxidation generations on the oxidation pathway of organic compounds. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available