4.7 Article

Morphology evolution of Ag alloyed WS2 films and the significantly enhanced mechanical and tribological properties

Journal

SURFACE & COATINGS TECHNOLOGY
Volume 238, Issue -, Pages 197-206

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2013.10.074

Keywords

WS2 film; Ag addition; Microstructure; Tribological properties

Funding

  1. National Key Basic Research Program of China (973) [2013CB632300]
  2. National Natural Science Foundation of China [51305427]

Ask authors/readers for more resources

The WS2-Ag composite films were prepared by radio frequency co-sputtering method. The effects of alloying Ag content on composition, microstructure, mechanical properties and friction behaviors have been analyzed by X-ray photoelectron spectroscopy (XPS), grazing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and high resolution transmission electron microscope (HRTEM), scratch tester, nano-indentation tester and ball-on-disk tribo-tester. The Ag addition was in present of nanocrystalline phase in the boundary of the crystalline WS2 matrix and induced morphology change, but could not completely prevent the columnar platelets. The columnar platelet was composed of a great deal of nanocrystalline and a small amount of amorphous WS2 phase. There were no substantial variations in the hardness of the composite films when the Ag content was in the range of 0-20.3 at.%. The suitable amount of Ag content was benefited for improving the film adhesive strength and wear resistance both in vacuum and humid air environment. Particularly, the composite film with 9.0 at.% Ag exhibited the longest wear life (about 7.6 x 10(5) cycles in vacuum, 6.7 x 10(5) cycles in humid air) under high Hertzian contact pressure (as high as 1.0 GPa). The wear mechanism was discussed in terms of the rearrangement of wear track and formation of transfer film. (C) 2013 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available