4.7 Article

Structural characterization of an electrically insulating diffusion barrier on a plasma-sprayed ceramic for severe environment applications

Journal

SURFACE & COATINGS TECHNOLOGY
Volume 220, Issue -, Pages 204-208

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2012.12.020

Keywords

Sealing coating; Aluminum phosphate; Nuclear magnetic resonance

Ask authors/readers for more resources

We investigate in this paper the physical properties and the structure of a protective barrier based on a thermal-sprayed alumina coating. This coating is known to form an electrically insulating barrier that efficiently protects stainless steel structures of melting furnaces subjected to high differences of voltage. Sealing the open and/or interconnected porosity of the alumina coating with aluminum phosphate is also known to improve the protection by mitigating leakage in the ceramic. The sealing procedure has been achieved by (i) impregnating the plasma-sprayed alumina coating with a mono aluminum phosphate (MAIP) solution and (ii) applying a thermal treatment to the system. A waterproof diffusion barrier presenting a good electric insulation is finally obtained and the protective performances were tested on specimens to assess their behavior under aggressive conditions. The formation procedure is characterized by parameters related to the solution and is dependent on the heating rate, the process temperature, and the isothermal duration of the thermal treatment. We show in this paper how these different parameters impact (i) the coating physical properties (thermal and electrical tests) and (ii) the coating structure that has been probed with P-31 solid state nuclear magnetic resonance (NMR). (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available