4.7 Article

Mechanisms of self-lubrication in patterned TiN coatings containing solid lubricant microreservoirs

Journal

SURFACE & COATINGS TECHNOLOGY
Volume 204, Issue 15, Pages 2392-2399

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2010.01.012

Keywords

Titanium nitride; Friction; Solid lubricant; Wear resistance; PVD; Coatings

Funding

  1. US National Science Foundation [DMII-0423329]

Ask authors/readers for more resources

The tribological mechanisms of friction and lubrication have been investigated in TIN coatings patterned to contain microscopic reservoirs for solid lubricant entrapment. Photo-lithography was used to fabricate three sets of samples on silicon wafers, varying the reservoir size (4 and 9 mu m) and spacing (11 and 25 mu m), which resulted in samples with a nominal reservoir area of either 2 or 10%. Pin-on-disk tests were run using lubricants of graphite and indium and counterfaces of alumina and steel (440C). In most cases, the samples with the 9 mu m holes spaced 25 mu m apart gave the lowest friction coefficients and longest wear life. Analysis of the wear tracks by SEM/EDS methods showed carbon to be present in the holes of the graphite/steel counterface samples, but TiO2 was found in the holes of the graphite/alumina counterface samples. For the indium/steel counterface samples indium was detected within the microreservoirs, but iron was also found, transferred from the ball. These experiments highlight a variety of tribological mechanisms that can operate in microreservoir-patterned coatings. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available