4.5 Article

Study of second-generation high-temperature superconducting magnets: the self-field screening effect

Journal

SUPERCONDUCTOR SCIENCE & TECHNOLOGY
Volume 27, Issue 9, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0953-2048/27/9/095010

Keywords

HTS magnet; YBCO; screening current; finite element modeling; high field magnets

Funding

  1. Junior Research Fellowship of Newnham College, University of Cambridge
  2. Royal Academy of Engineering, UK
  3. State Key Lab. of Power System, Tsinghua University

Ask authors/readers for more resources

Second-generation high-temperature superconductors (2G HTS) have high current density in very high magnetic fields. They are good candidates for high field magnets, especially when the magnetic field exceeds the critical fields of low-temperature superconductors. However, the thin and flat geometry of these conductors allows persistent screening currents (or shielding currents) to flow in the conductors. The screening currents caused by the ramping of applied current to the coil is identified as the self-field screening effect. The screening-current-induced magnetic field changes the magnetic field distribution of the magnet, and it also generates drift. This paper employs both experimental and numerical methods to study the mechanism of self-field screening currents for 2G HTS magnets. A 2G HTS magnet was constructed and tested, and a finite element model was built based on the magnet. The comparison between calculation and measurement is presented with detailed analysis. Current distributions inside the HTS magnet are calculated to illustrate the effects of screening. The screening-current-induced magnetic field is quantified by comparing the magnetic field distribution with a baseline copper model. The model is also used to explain the mechanism of the current sweep strategy, which can be used to effectively eliminate screening currents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available