3.9 Article

A modal-Hamiltonian interpretation of quantum mechanics

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.shpsb.2008.01.003

Keywords

quantum mechanics; modal interpretation; Hamiltonian; quantum measurement; decoherence; classical limit; quantum ontology

Ask authors/readers for more resources

The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by applying it to well-known physical situations. Moreover, we explain how this interpretation supplies a description of the elemental categories of the ontology referred to by the theory, where quantum systems turn out to be bundles of possible properties. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available