4.7 Article

Cable-deck dynamic interactions at the International Guadiana Bridge: On-site measurements and finite element modelling

Journal

STRUCTURAL CONTROL & HEALTH MONITORING
Volume 15, Issue 3, Pages 237-264

Publisher

WILEY-BLACKWELL
DOI: 10.1002/stc.241

Keywords

cable-stayed bridge; cable vibration; ambient vibration measurements; finite element modelling; dynamic interaction; traffic load

Ask authors/readers for more resources

The International Guadiana Bridge is a cable-stayed bridge crossing the Guadiana River, which marks the southern border between Portugal and Spain. The bridge has a central span of 324 m and a total length of 666 m and was open to traffic in 1991. Despite the globally satisfying behaviour under the common environmental loads, which largely ensures the bridge serviceability, frequent episodes of cable vibration have been observed since completion of the construction. In this paper, the bridge modal properties and dynamic behaviour, identified from repeated campaigns of vibration data acquisitions, are compared with the response of a three-dimensional finite element model, including the description of the cable transversal motion. The model, after minor updating, furnishes a realistic reproduction of the current bridge dynamic behaviour. Then different possible justifications of the local vibrations are evaluated, briefly scanning the known sources of large amplitude cable oscillations both in the linear and the nonlinear field. In particular, the occurrence of different internal resonance conditions is deeply discussed, in order to verify whether the experimental observations could be really justified by a cable-deck dynamic interaction mechanism. Among different possibilities, a beating phenomenon between two resonant modes, amplified by the lower damping and inertial characteristics of the local mode with respect to the global one, is selected as the most critical cable excitation source. Since the cable vibrations are proved to persist for different wind conditions, the heavy traffic load on the bridge deck is investigated as one possible source of the global mode direct excitation. On this respect, the model response to random load and moving forces acting on the bridge deck is numerically evaluated evidencing how some particular features of the real bridge behaviour can be qualitatively reproduced. Copyright (c) 2008 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available