4.7 Article

Multiobjective backtracking search algorithm: application to FSI

Journal

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
Volume 59, Issue 1, Pages 131-151

Publisher

SPRINGER
DOI: 10.1007/s00158-018-2056-6

Keywords

Fluid-structure interaction; Aerodynamic; Multiobjective optimization; Evolutionary algorithm

Ask authors/readers for more resources

Fluid-structure interaction (FSI) problems play an important role in many technical applications, for instance, wind turbines, aircraft, injection systems, or pumps. Thus, the optimization of such kind of problems is of high practical importance. Optimization algorithms aim to find the best values for a system's parameters under various conditions. In this paper, we present a new Backtracking Search Optimization Algorithm for multiobjective optimization, named BSAMO, a new evolutionary algorithm (EA) for solving real-valued numerical optimization problems. EAs are popular stochastic search algorithms that are widely used to solve nonlinear, nondifferentiable and complex numerical optimization problems. In order to test the performance of this algorithm, a well known benchmark multiobjective problem has been chosen from the literature, and for FSI optimization, using a partitioned coupling procedure. The method has been tested through a 2D plate and a 3D wing subjected to aerodynamic loads. The obtained Pareto solutions are then presented and compared to those of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The numerical results demonstrate the efficiency of BSAMO and also its best performance in tackling real-world multiphysics problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available